
COMP1331
COMPUTER AND PROGRAMMING

Prepared by:
Dr. Mamoun Nawahdah

Approved by:
Computer Science Department

February 16, 2022

Contents
1 Elementary Java Programming 1

2 Selections 5

3 Loops 12

4 Methods 15

5 Recursion 19

6 Objects and Classes Part(I) 22

7 Objects and Classes Part(II) 27

8 Single-Dimensional Arrays 32

9 Multidimensional Arrays 37

10 Strings 42

11 Introduction to Exception Handling and Text I/O 47

12 Object-Oriented Thinking 50

i

Introduction

The aim of this lab manual is to help COMP1331 students to understand and apply
a variety of fundamentals of object oriented programming concepts. Every lab session is
provided with lab objectives, a brief context about the experiment’s topic(s) to strength
the student understanding to the lab material; a Java language syntax for the commands
or statements that will be used; and a set of activities that allow the students to completely
understand the topic. The activities in this manual are carefully prepared, studied and
revised for students practice.

This lab manual starts by preparing the students to embark on the journey of learning
Java programming language fundamentals. The students will begin to practice about Java
and fundamental programming techniques with primitive data types, variables, constants,
assignments, expressions, and operators (Lab 1), selection statements (Lab 2), loops (Lab
3), methods and mathematical functions (Lab 4), and an introduction to recursion (Lab 5).
Then the students will practice object-oriented programming. The students will practice
programming with objects and classes (Lab 6 and Lab 7), Single-Dimensional arrays (Lab
8), Multidimensional arrays (Lab 9), strings (Lab 10), introduction to exception handling
and Text I/O (Lab 11), and class abstraction and basic relationships (Lab 12).

The material included in this manual has been adopted from the course’s text-book:
Y. Daniel Liang, Introduction to Java programming and data structures, Twelfth edition,
Pearson, 2019. (ISBN-13: 978-0-13-651996-6)

ii

1 Elementary Java Programming
1.1 Objectives

• To understand the meaning of Java language specification, API, JDK™, and JRE™.

• To write a simple Java program.

• To display output on the console.

• To explain the basic syntax of a Java program.

• To create, compile, and run Java programs.

• To write Java programs to perform simple computations.

• To obtain input from the console using the Scanner class.

• To use identifiers to name variables, constants, methods, and classes.

• To use variables to store data.

• To program with assignment statements and assignment expressions.

1

1.2 Context
Creating, Compiling, and Executing a Java Program

Figure 1 shows a simple Java program. You have to create your program and compile it
before it can be executed. This process is repetitive, as shown in Figure 2. If your program
has compile errors, you have to modify the program to fix them, then recompile it. If your
program has runtime errors or does not produce the correct result, you have to modify the
program, recompile it, and execute it again.

Figure 1: A Simple Java Program

Figure 2: The Java program-development process consists of repeatedly creating/modifying
source code, compiling, and executing programs.

2

You can use any text editor to create and edit a Java source-code file. From the
command window (CMD), you can use a text editor such as Notepad to create the Java
source-code file, as shown in Figure 3.

Figure 3: You can create a Java source file using Windows Notepad.

Note: The source file must end with the extension .java and must have the same exact
name as the public class name.

A Java compiler translates a Java source file into a Java bytecode file. The following
command compiles Welcome.java:

javac Welcome.java

If there aren’t any syntax errors, the compiler generates a bytecode file with a .class
extension. The following command runs the bytecode:

java Welcome

Reading Input from the Console
Reading input from the console enables the program to accept input from the user. Java

uses System.out to refer to the standard output device, and System.in to the standard
input device. To perform console output, you simply use the println method to display a
primitive value or a string to the console. To perform console input, you need to use the
Scanner class to create an object to read input from System.in, as follows:

Scanner input = new Scanner(System.in);

The Scanner class is in the java.util package.
import java.util.Scanner;

You can invoke the nextDouble() method to read a double value as follows:
double radius = input.nextDouble();

This statement reads a number from the keyboard and assigns the number to radius.

You can invoke the nextInt() method to read an integer value as follows:
int width = input.nextInt();

3

1.3 Activities
• Activity 1: Write a program that displays Welcome to Java, Welcome to Com-

puter Science, and Programming is fun.

• Activity 2: Write a program that displays the area and perimeter of a rectangle
with a width of 5.5 and a height of 4.3 using the following formula:

area = width * height

• Activity 3: Assume that a runner runs 10 kilometers in 25 minutes and 30 seconds.
Write a program that displays the average speed in miles per hour. (Note 1 mile is
equal to 1.6 kilometers.)

• Activity 4: Write a program that prompts the user to enter the width and height
of a rectangle and displays the perimeter and the area. Here is a sample run:

Enter the width of a rectangle: 3
Enter the height of a rectangle: 4

The perimeter is 14
The area is 12

• Activity 5: Write a program that reads a Celsius degree in a double value from the
console, then converts it to Fahrenheit, and displays the result. The formula for the
conversion is as follows:

fahrenheit = (9 / 5) * celsius + 32

Hint: In Java, 9 / 5 is 1, but 9.0 / 5 is 1.8.

4

2 Selections
2.1 Objectives

• To understand the meaning of IDE.

• To develop Java programs using Eclipse™.

• To implement selection control using one-way if statements.

• To combine conditions using logical operators.

• To implement selection control using switch statements.

5

2.2 Context
An IDE is an Integrated Development Environment for rapidly developing programs.

Developing Java Programs Using Eclipse™
You can edit, compile, run, and debug Java Programs using Eclipse™.

• Creating a Java Project: you need to first create a project to hold all files. See Figure
4.

Figure 4: The New Java Project dialog is for specifying a project name and the properties.

6

• Creating a Java Class: After a project is created, you can create Java programs
(classes) in the project. see Figure 5

Figure 5: The New Java Class dialog box is used to create a new Java class.

• Compiling and Running a Class: The Run icon automatically compiles the program
if the program has been changed and run it. The output is displayed in the Console
pane, as shown in Figure 6.

7

Figure 6: You can edit a program and run it in Eclipse™.

Boolean Data Type, Values, and Expressions
The program can decide which statements to execute based on a condition. Selection

statements use conditions that are Boolean expressions. A Boolean expression is an
expression that evaluates to a Boolean value: true or false. A variable that holds a Boolean
value is known as a Boolean variable. Java provides six relational operators (also known
as comparison operators), shown in Table 1, which can be used to compare two values.

Table 1: Relational Operators
Java Operator Name
< Less than.
<= Less than or equal to.
> Greater than.
>= Greater than or equal to.
== Equal to.
!= Not equal to.

8

if Statements
An if statement is a construct that enables a program to specify alternative paths of

execution. Java has several types of selection statements:

• One-way if statements: An if statement executes statements if the boolean-
expression evaluates to true.

if (boolean-expression){
statement(s);

}

• Two-way if-else statements: An if-else statement decides the execution path based
on whether the condition is true or false.

if (boolean-expression){
statement(s)-for-the-true-case;

}
else {

statement(s)-for-the-false-case;
}

• Nested if statements: An if statement can be inside another if statement to form
a nested if statement.

switch Statements
A switch statement executes statements based on the value of a variable or an expres-

sion. Here is the full syntax for the switch statement:

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
...
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

9

2.3 Activities
• Activity 1: Write a program that prompts the user to enter an integer between 1

and 12 and displays the English month names January, February, . . . , December
for the numbers 1, 2, . . . , 12, accordingly.

• Activity 2: Write a program that prompts the user to enter three integers and
display the integers in decreasing order.

• Activity 3: Write a program that prompts the user to enter a three-digit integer
(e.g. 123) and determines whether it is a palindrome integer. An integer is palin-
drome if it reads the same from right to left and from left to right. Here are sample
runs of this program:

Sample run 1:
Enter a three-digit integer: 121
121 is a palindrome

Sample run 2:
Enter a three-digit integer: 123
123 is not a palindrome

• Activity 4: Write a program that reads three edges for a triangle and computes the
perimeter if the input is valid. Otherwise, display that the input is invalid.
The input is valid if the sum of every pair of two edges is greater than the remaining
edge.

• Activity 5: Write a program that prompts the user to enter the coordinates of two
points (x1, y1) and (x2, y2), and displays the line equation in the slope intercept
form, i.e., y = mx + b. m and b can be computed using the following formula:

m = y2 − y1

x2 − x1

b = y1 − mx1

10

• Activity 6: Write a program that prompts the user to enter the exchange rate from
currency in U.S. dollars $ to Jordanian dinar JOD. Prompt the user to enter 0 to
convert from $ to JOD and 1 to convert from JOD to $. Prompt the user to enter
the amount in $ or JOD to convert it to JOD or $, respectively. Here are the sample
runs:

Sample run 1:
Enter the exchange rate from $ to JOD: 0.709
Enter 0 to convert $ to JOD and 1 vice versa: 0
Enter the $ amount: 100
100.0 $ is 70.9 JOD

Sample run 2:
Enter the exchange rate from $ to JOD: 0.709
Enter 0 to convert $ to JOD and 1 vice versa: 1
Enter the JOD amount: 100
100.0 JOD is 141.0438$

Sample run 3:
Enter the exchange rate from $ to JOD: 0.709
Enter 0 to convert $ to JOD and 1 vice versa: 5
Incorrect input: 5

11

3 Loops
3.1 Objectives

• To write programs for executing statements repeatedly using a while loop.

• To write loops using do-while statements.

• To write loops using for statements.

• To write nested loops.

• To implement program control with break and continue.

12

3.2 Context

The while Loop
A while loop executes statements repeatedly while the condition is true.The syntax for

the while loop is as follows:
while (loop-continuation-condition) {

// Loop body
statement(s);

}
The part of the loop that contains the statements to be repeated is called the loop body.

A one-time execution of a loop body is referred to as an iteration of the loop.

The do-while Loop
A do-while loop is the same as a while loop except that it executes the loop body first

then checks the loop continuation condition. Its syntax is as follows:
do {

// Loop body
statement(s);

} while (loop-continuation-condition);

You can write a loop using either the while loop or the do-while loop. Sometimes one
is a more convenient choice than the other.

The for Loop
The for loop statement starts with the keyword for, followed by a pair of parentheses

enclosing the control structure of the loop. The syntax of a for loop is as follows:
for (initial-action; loop-continuation-condition;

action-after-each-iteration) {
// Loop body
statement(s);

}

Nested Loops
A loop can be nested inside another loop. Nested loops consist of an outer loop and one

or more inner loops. Each time the outer loop is repeated, the inner loops are re-entered,
and started a new.

Keywords break and continue
The break and continue keywords provide additional controls in a loop. You have used

the keyword break in a switch statement. You can also use break in a loop to immediately
terminate the loop. You can also use the continue keyword in a loop. When it is encoun-
tered, it ends the current iteration and program control goes to the end of the loop body.
In other words, continue breaks out of an iteration, while the break keyword breaks out of
a loop.

13

3.3 Activities
• Activity 1: Write a program that displays all the numbers from 1 to 1,000 (10 per

line) that are divisible by 3 and 4.

• Activity 2: Write a program that displays all the numbers from 1 to 1,000 (10 per
line) that are divisible by 3 or 4, but not both.

• Activity 3: The greatest common divisor (GCD) of two integers n1 and n2 is as
follows: First find d to be the minimum of n1 and n2, then check whether d, d-1,
d-2, ..., 2, or 1 is a divisor for both n1 and n2 in this order. The first such common
divisor is the greatest common divisor for n1 and n2. Write a program that prompts
the user to enter two positive integers and displays the GCD.

• Activity 4: You can approximate π by using the following summation:

π = 4(1 − 1
3 + 1

5 − 1
7 + 1

9 − 1
11 + ... + (−)i+1

2i − 1)

Write a program that displays the π value for i = 100, 1000, and 10000.

• Activity 5: You can approximate e using the following summation:

e = 1 + 1
1! + 1

2! + 1
3! + 1

4! + ... + 1
i!

Write a program that displays the e value for i = 1, 2, 3, ... , and 10.

• Activity 6: A positive integer is called a perfect number if it is equal to the sum of
all of its positive divisors, excluding itself. For example, 6 is the first perfect number
because 6 = 3 + 2 + 1. The next is 28 = 14 + 7 + 4 + 2 + 1. Write a program to
find all the perfect numbers < 10,000.

14

4 Methods
4.1 Objectives

• To define methods with formal parameters.

• To invoke methods with actual parameters (i.e., arguments).

• To define methods with a return value.

• To define methods without a return value and distinguish the differences between
void methods and value-returning methods.

• To pass arguments by value.

• To determine the scope of variables.

• To solve mathematical problems by using the methods in the Math class.

15

4.2 Context
Methods can be used to define reusable code and organize and simplify coding, and make
code easy to maintain.

Defining and Calling a Method
A method definition consists of method name, parameters, return value type, and body.

The syntax for defining a method is as follows:

modifier returnValueType methodName(list of parameters) {
// Method body;
}

Let’s look at a method defined to find the larger between two integers. This method,
named max, has two int parameters, num1 and num2, the larger of which is returned by
the method. Figure 7 illustrates the components of this method.

Figure 7: A method definition consists of a method header and a method body.

If a method returns a value, it is called a value-returning method; otherwise, it is called
a void method. The variables defined in the method header are known as formal parameters
or simply parameters. A parameter is like a placeholder: when a method is invoked, you
pass a value to the parameter. This value is referred to as an actual parameter or argument.
The method name and the parameter list together constitute the method signature.

To execute the method, you have to call or invoke it. There are two ways to call a
method, depending on whether the method returns a value or not. If a method returns a
value, a call to the method is usually treated as a value. For example:

int larger = max(3, 4);

16

Passing Arguments by Values
When you invoke a method with an argument, the value of the argument is passed to

the parameter. This is referred to as pass-by-value. If the argument is a variable rather
than a literal value, the value of the variable is passed to the parameter. The variable is
not affected, regardless of the changes made to the parameter inside the method.

The Scope of Variables
A variable defined inside a method is referred to as a local variable. The scope of a local

variable starts from its declaration and continues to the end of the block that contains the
variable.

Common Mathematical Functions
Java provides many useful methods in the Math class for performing common mathe-

matical functions. They can be categorized as trigonometric methods (see Table 2), expo-
nent methods (see Table 3), and service methods (see Table 4). In addition to methods,
the Math class provides two useful double constants, PI and E.

Table 2: Trigonometric Methods in the Math Class
Method Description
sin(radians) Returns the trigonometric sine of an angle in radians.
cos(radians) Returns the trigonometric cosine of an angle in radians.
tan(radians) Returns the trigonometric tangent of an angle in radians.
toRadians(degree) Returns the angle in radians for the angle in degrees.
toDegrees(radians) Returns the angle in degrees for the angle in radians.

Table 3: Exponent Methods in the Math Class
Method Description
exp(x) Returns e raised to power of x (ex).
log(x) Returns the natural logarithm of x (ln(x) = loge(x)).
log10(x) Returns the base 10 logarithm of x (log10(x)).
pow(a, b) Returns a raised to the power of b (ab).
sqrt(x) Returns the square root of x (

√
x) for x>=0.

Table 4: Rounding Methods in the Math Class
Method Description
ceil(x) x is rounded up to its nearest integer. This integer is returned as a double value.
floor(x) x is rounded down to its nearest integer. This integer is returned as a double value.
rint(x) x is rounded to its nearest integer. If x is equally close to two integers, the even

one is returned as a double value.
round(x) Returns (int)Math.floor(x + 0.5) if x is a float and returns (long)Math.floor(x +

0.5) if x is a double.

17

4.3 Activities
• Activity 1: Write a method that computes the sum of the digits in an integer. Use

the following method header:
public static int sumDigits(long n)

For example, sumDigits(234) returns 9 (= 2 + 3 + 4). Use a loop to repeatedly
extract and remove the digit until all the digits are extracted.
Write a test program that prompts the user to enter an integer then displays the sum
of all its digits.

• Activity 2: Write a method with the following header to display an integer in reverse
order:

public static void reverse(int number)
For example, reverse(3456) displays 6543.
Write a test program that prompts the user to enter an integer then displays its
reversal.

• Activity 3: Write a method with the following header to display if an integer is
prime or not:

public static boolean isPrime(int number)
Use this method to find the number of prime numbers less than 10000.

• Activity 4: A regular polygon is an n-sided polygon in which all sides are of the
same length and all angles have the same degree. The formula for computing the
area of a regular polygon is:

Area = n ∗ s2

4 ∗ tan(π
n
)

Here, s is the length of a side.
Write a program that prompts the user to enter the number of sides and their length
of a regular polygon and displays its area. Here is a sample run:

Enter the number of sides: 5
Enter the side: 6.5

The area of the polygon is 72.69017017488385

• Activity 5: Write a program that prompts the user to enter a decimal number
between 0 and 255 and displays its corresponding binary value.

18

5 Recursion
5.1 Objectives

• To describe what a recursive method is and the benefits of using recursion.

• To develop recursive methods for recursive mathematical functions.

• To explain how recursive method calls are handled in a call stack.

• To solve problems using recursion.

19

5.2 Context
Recursion is a technique that leads to elegant solutions to problems that are difficult to
program using simple loops.
To use recursion is to program using recursive methods that is, to use methods that invoke
themselves. Recursion is a useful programming technique. In some cases, it enables you to
develop a natural, straightforward, simple solution to an otherwise difficult problem.

A recursive call can result in many more recursive calls because the method keeps on
dividing a subproblem into new subproblems. For a recursive method to terminate, the
problem must eventually be reduced to a stopping case, at which point the method re-
turns a result to its caller. The caller then performs a computation and returns the result
to its own caller. This process continues until the result is passed back to the original caller.

Problem Solving Using Recursion
If you think recursively, you can solve many problems using recursion.

All recursive methods have the following characteristics:

• The method is implemented using an if-else or a switch statement that leads to
different cases.

• One or more base cases (the simplest case) are used to stop recursion.

• Every recursive call reduces the original problem, bringing it increasingly closer to a
base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems. Each
subproblem is the same as the original problem, but smaller in size. You can apply the
same approach to each subproblem to solve it recursively.

20

5.3 Activities
• Activity 1: The factorial of a number n can be recursively defined as follows:

– 0! = 1;
– n! = n * (n - 1)! n > 0

Implement the factorial method using recursion.
Write a program that prompts the user to enter an integer and displays its factorial.

• Activity 2: The greatest common divisor gcd(m, n) is defined recursively as fol-
lows:

– If m % n is 0, gcd(m, n) is n.
– Otherwise, gcd(m, n) is gcd(n, m % n).

Write a recursive method to find the GCD.
Write a test program that prompts the user to enter two integers and displays their
GCD.

• Activity 3: Write a recursive method to compute the following series:

m(i) = 1 + 1
2 + 1

3 + 1
4 + ... + 1

i

Write a test program that displays m(i) for i = 1, 2, 3,. . . , 20.

• Activity 4: Write a recursive method that displays an int value reversely on the
console using the following header:

public static void reverseDisplay(int value)
For example, reverseDisplay(12345) displays 54321.
Write a test program that prompts the user to enter an integer and displays its
reversal.

• Activity 5: Write a recursive method that computes the sum of the digits in an
integer. Use the following method header:

public static int sumDigits(long n)
For example, sumDigits(234) returns 2 + 3 + 4 = 9.
Write a test program that prompts the user to enter an integer and displays its sum.

21

6 Objects and Classes Part(I)
6.1 Objectives

• To describe objects and classes, and use classes to model objects.

• To use UML graphical notation to describe classes and objects.

• To demonstrate how to define classes and create objects.

• To create objects using constructors.

• To define a reference variable using a reference type and access objects via object
reference variables.

• To access an object’s data and methods using the object member access operator (.).

• To define data fields of reference types and assign default values for an object’s data
fields.

• To distinguish between object reference variables and primitive data-type variables.

22

6.2 Context
Defining Classes for Objects Object-oriented programming (OOP) involves program-
ming using objects. An object represents an entity in the real world that can be distinctly
identified. An object has a unique identity, state, and behavior.

• The state of an object (also known as its properties or attributes) is represented by
data fields with their current values.

• The behavior of an object (also known as its actions) is defined by methods. To
invoke a method on an object is to ask the object to perform an action.

Objects of the same type are defined using a common class. A class is a template that
defines what an object’s data fields and methods will be. An object is an instance of a
class. You can create many instances of a class. Creating an instance is referred to as
instantiation.

A class provides methods of a special type, known as constructors, which are invoked to
create a new object. A constructor can perform any action, but constructors are designed
to perform initializing actions, such as initializing the data fields of objects. Figure 8 shows
an example of defining the class for Circle objects.

The illustration of the class in Figure 8 can be standardized using Unified Modeling
Language (UML) notation. This notation, as shown in Figure 9, is called a UML class
diagram, or simply a class diagram.
In the class diagram, the data field is denoted as

dataFieldName: dataFieldType
The constructor is denoted as

ClassName(parameterName: parameterType)
The method is denoted as

methodName(parameterName: parameterType): returnType

23

Figure 8: A class is a construct that defines objects of the same type.

Figure 9: Classes and objects can be represented using UML notation.

24

6.3 Activities
• Activity 1: Design a class named Rectangle to represent a rectangle. The class

contains:

– Two double data fields named width and height that specify the width and height
of the rectangle. The default values are 1 for both width and height.

– A no-arg constructor that creates a default rectangle.
– A constructor that creates a rectangle with the specified width and height.
– A method named getArea() that returns the area of this rectangle.
– A method named getPerimeter() that returns the perimeter.

Draw the UML diagram for the class then implement the class.
Write a test program that creates two Rectangle objects - one with width 4 and
height 40, and the other with width 3.5 and height 35.9.
Display the width, height, area, and perimeter of each rectangle in this order.

• Activity 2: Design a class named Fan to represent a fan. The class contains:

– An int data field named speed that specifies the speed of the fan (the default is
0).

– A boolean data field named on that specifies whether the fan is on (the default
is false).

– A double data field named radius that specifies the radius of the fan (the default
is 5).

– A string data field named color that specifies the color of the fan (the default
is “blue”).

– A no-arg constructor that creates a default fan.
– A method named toString() that returns a string description for the fan. If the

fan is on, the method returns the fan speed, color, and radius in one combined
string. If the fan is not on, the method returns the fan color and radius along
with the string “fan is off” in one combined string.

Draw the UML diagram for the class then implement the class.
Write a test program that creates two Fan objects. Assign maximum speed of 100,
radius 10, color yellow, and turn it on to the first object.
Assign medium speed of 50, radius 5, color blue, and turn it off to the second object.
Display the objects by invoking their toString method.

25

• Activity 3: In an n-sided regular polygon, all sides have the same length and all
angles have the same degree (i.e., the polygon is both equilateral and equiangular).
Design a class named RegularPolygon that contains:

– An int data field named n that defines the number of sides in the polygon with
default value 5.

– A double data field named side that stores the length of the side with default
value 2.

– A double data field named x that defines the x-coordinate of the polygon’s center
with default value 10.

– A double data field named y that defines the y-coordinate of the polygon’s center
with default value 10.

– A no-arg constructor that creates a regular polygon with default values.
– A constructor that creates a regular polygon with the specified number of sides

and length of side, centered at (10, 10).
– A constructor that creates a regular polygon with the specified number of sides,

length of side, and x- and y-coordinates.
– The method getPerimeter() that returns the perimeter of the polygon.
– The method getArea() that returns the area of the polygon. The formula for

computing the area of a regular polygon is:

Area = n ∗ s2

4 ∗ tan(π
n
)

Draw the UML diagram for the class then implement the class.
Write a test program that creates three RegularPolygon objects, created using the
no-arg constructor, using RegularPolygon(4, 3), and using RegularPolygon(6, 4.5, 0,
0). For each object, display its perimeter and area.

26

7 Objects and Classes Part(II)
7.1 Objectives

• To use the Java library classes Date and Random.

• To distinguish between instance and static variables and methods.

• To define private data fields with appropriate getter and setter methods.

• To distinguish between public, private, and default visibility modifiers.

• To encapsulate data fields to make classes easy to maintain.

• To determine the scope of variables in the context of a class.

• To use the keyword this to refer to the calling object itself.

27

7.2 Context
Using Classes from the Java Library

The Java API contains a rich set of classes for developing Java programs. For example
Java provides a system-independent encapsulation of date and time in the java.util.Date
class, as shown in Table 5.

Table 5: A Date object represents a specific date and time.
Method Description
Date() Constructs a Date object for the current time.
Date(elapseTime: long) Constructs a Date object for a given time in milliseconds elapsed

since January 1, 1970, GMT.
toString() Returns a string representing the date and time.
getTime() Returns the number of milliseconds since January 1, 1970, GMT.
setTime(elapseTime: long) Sets a new elapse time in the object.

Another useful class is java.util.Random class. This class used to generate random
numbers, as shown in Table 6, which can generate a random int, long, double, float, and
boolean value.

Table 6: A Random object can be used to generate random values.
Method Description
Random() Constructs a Random object with the current time as its seed.
nextInt() Returns a random int value.
nextInt(n: int) Returns a random int value between 0 and n (excluding n).
nextLong() Returns a random long value.
nextDouble() Returns a random double value between 0.0 and 1.0 (excluding 1.0).
nextFloat() Returns a random float value between 0.0F and 1.0F (excluding 1.0F).
nextBoolean() Returns a random boolean value.

Static Variables, Constants, and Methods

A static variable is shared by all objects of the class. A static method cannot access
instance members (i.e., instance data fields and methods) of the class.

Note: static variables and methods are underlined in the UML class diagram.

Constants in a class are shared by all objects of the class. Thus, constants should be
declared as final static. For example, the constant PI in the Math class is defined as
follows:

final static double PI = 3.14159265358979323846;

28

Visibility Modifiers
You can use the public visibility modifier for classes, methods, and data fields to denote

they can be accessed from any other classes. If no visibility modifier is used, then by default
the classes, methods, and data fields are accessible by any class in the same package. In
addition to the public and default visibility modifiers, Java provides the private modifier
for class members. The private modifier makes methods and data fields accessible only
from within its own class.

Data Field Encapsulation
Making data fields private protects data and makes the class easy to maintain. To

prevent direct modifications of data fields, you should declare the data fields private, using
the private modifier. To make a private data field accessible, provide a getter method to
return its value. To enable a private data field to be updated, provide a setter method to
set a new value. A getter method is also referred to as an accessor and a setter to a mutator.

The Scope of Variables
Instance and static variables in a class are referred to as the class’s variables or data

fields. A variable defined inside a method is referred to as a local variable. The scope of
a class’s variables is the entire class. If a local variable has the same name as a class’s
variable, the local variable takes precedence and the class’s variable with the same name
is hidden.

The this Reference
The keyword this refers to the calling object. It can also be used inside a constructor

to invoke another constructor of the same class. Figure 10 shows the different usage of this
keyword.

Figure 10: Using this to Reference Data Fields and to Invoke a Constructor.

29

7.3 Activities
• Activity 1: Write a program that creates a Date object, sets its elapsed time to

10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000
, and 1000000000000, and displays the date and time using the toString() method,
respectively.

• Activity 2: Write a program that creates a Random object and displays the first
50 random integers between 0 and 100 using the nextInt(100) method.

• Activity 3: Design a class named StopWatch. The class contains:

– Private long data fields startTime and endTime with getter methods.
– A no-arg constructor that initializes startTime and endTime with the current

time.
– A method named start() that resets the startTime to the current time.
– A method named stop() that sets the endTime to the current time.
– A method named getElapsedTime() that returns the elapsed time for the stop-

watch in milliseconds.

Draw the UML diagram for the class then implement the class.
Write a test program that measures the execution time of generating 100,000 random
numbers.

30

• Activity 4: Design a class named Account that contains:

– A private int data field named id for the account (default 0).
– A private double data field named balance for the account (default 0).
– A private double data field named annualInterestRate that stores the current

interest rate (default 0). Assume that all accounts have the same interest rate.
– A private Date data field named dateCreated that stores the date when the

account was created.
– A no-arg constructor that creates a default account.
– A constructor that creates an account with the specified id and initial balance.
– The accessor and mutator methods for id, balance, and annualInterestRate.
– The accessor method for dateCreated.
– A method named getMonthlyInterestRate() that returns the monthly interest

rate.
– A method named getMonthlyInterest() that returns the monthly interest.
– A method named withdraw that withdraws a specified amount from the account.
– A method named deposit that deposits a specified amount to the account.

Draw the UML diagram for the class then implement the class.
Write a test program that creates an Account object with an account ID of 1122,
a balance of $20000, and an annual interest rate of 4.5%. Use the withdraw method
to withdraw $2500, use the deposit method to deposit $3000, and print the balance,
the monthly interest, and the date when this account was created.

Hint: The method getMonthlyInterest() is to return monthly interest, not the
interest rate. Monthly interest is balance * monthlyInterestRate. monthlyIntere-
stRate is annualInterestRate / 12. Note annualInterestRate is a percentage, for
example 4.5%. You need to divide it by 100.

31

8 Single-Dimensional Arrays
8.1 Objectives

• To declare array reference variables and create arrays.

• To obtain array size using arrayRefVar.length and know default values in an array.

• To access array elements using indexes.

• To declare, create, and initialize an array using an array initializer.

• To copy contents from one array to another.

• To develop and invoke methods with array arguments and return values.

32

8.2 Context
Array Basics

An array is used to store a collection of data, but often we find it more useful to think
of an array as a collection of variables of the same type. To use an array in a program, you
must declare a variable to reference the array and specify the array’s element type. Here
is the syntax for declaring an array variable.

elementType[] arrayRefVar;

After an array variable is declared, you can create an array by using the new operator
and assign its reference to the variable with the following syntax:

arrayRefVar = new elementType[arraySize];

To assign values to the elements, use the syntax:
arrayRefVar[index] = value;

When space for an array is allocated, the array size must be given, specifying the
number of elements that can be stored in it. The size of an array cannot be changed after
the array is created. Size can be obtained using arrayRefVar.length. When an array is
created, its elements are assigned the default value of 0 for the numeric primitive data
types, \U0000 for char types, and false for boolean types.
Here is an example of creating an array:

double[] myList = new double[6];
For example, the following code initializes the above array:

myList[0] = 5.6;
myList[1] = 4.5;
myList[2] = 3.3;
myList[3] = 13.2;
myList[4] = 4.0;
myList[5] = 34.33;

This array is illustrated in Figure 11.

Figure 11: The array myList has 6 elements of double type and int indices from 0 to 5.

33

Java has a shorthand notation, known as the array initializer, which combines the
declaration, creation, and initialization of an array in one statement using the following
syntax:

elementType[] arrayRefVar = {value0, value1, ..., valuek};

Assigning one array variable to another array variable actually copies one reference
to another and makes both variables point to the same memory location.To copy the
contents of one array into another, you have to copy the array’s individual elements into
the other array. You can write a loop to copy every element from the source array to
the corresponding element in the target array. Another approach is to use the arraycopy
method in the java.lang.System class to copy arrays instead of using a loop. The syntax
for arraycopy is:

arraycopy(sourceArray, srcPos, targetArray, tarPos, length);

Java uses pass-by-value to pass arguments to a method. There are important differences
between passing the values of variables of primitive data types and passing arrays.

• For an argument of a primitive type, the argument’s value is passed.

• For an argument of an array type, the value of the argument is a reference to an
array;

this reference value is passed to the method. Thus, if you change the array in the method,
you will see the change outside the method.
You can pass arrays when invoking a method. A method may also return an array. When
a method returns an array, the reference of the array is returned.

34

8.3 Activities
• Activity 1: Write a program that reads 10 integers then displays them in the reverse

of the order in which they were read.

• Activity 2: Write a program that generates 100 random integers between 0 and 9
and displays the count for each number.
(Hint: Use an array of 10 integers, say counts, to store the counts for the number of
0s, 1s, . . . , 9s.)

• Activity 3: Write a method that finds the smallest element in an array of double
values using the following header:

public static double min(double[] array)
Write a test program that prompts the user to enter 10 numbers, invokes this method
to return the minimum value, and displays the minimum value.

• Activity 4: Write a method that returns a new array by eliminating the duplicate
values in the array using the following method header:

public static int[] eliminateDuplicates(int[] list)
Write a test program that reads in 10 integers, invokes the method, and displays the
distinct numbers separated by exactly one space.
Here is a sample run of the program:

Enter 10 numbers: 1 2 3 2 1 6 3 4 5 2
The distinct numbers are: 1 2 3 6 4 5

35

• Activity 5: The arrays list1 and list2 are identical if they have the same contents.
Write a method that returns true if list1 and list2 are identical, using the following
header:

public static boolean equals(int[] list1, int[] list2)
Write a test program that prompts the user to enter two lists of integers and displays
whether the two are identical.
Here are the sample runs.

Sample run 1:
Enter list1 size : 5
Enter list2 size : 5
Enter list1 contents: 2 5 6 1 6
Enter list2 contents: 2 5 6 1 6
Two lists are strictly identical

Sample run 2:
Enter list1 size : 5
Enter list2 size : 5
Enter list1 contents: 2 5 6 6 1
Enter list2 contents: 2 5 6 1 6
Two lists are not strictly identical

• Activity 6: Write the following method that merges two sorted lists into a new
sorted list:

public static int[] merge(int[] list1, int[] list2)

36

9 Multidimensional Arrays
9.1 Objectives

• To declare variables for two-dimensional arrays, create arrays, and access array ele-
ments in a two-dimensional array using row and column indices.

• To pass two-dimensional arrays to methods.

• To use multidimensional arrays.

• To store and process objects in arrays.

37

9.2 Context
A two-dimensional array is an array that contains other arrays as its elements. You can
use a two-dimensional array to store a matrix or a table. The syntax for declaring a two-
dimensional array is as follows:

elementType[][] arrayRefVar;

As an example, here is how you would declare a two-dimensional array variable matrix
of int values:

int[][] matrix;

You can create a two-dimensional array of 5-by-5 int values and assign it to matrix
using this syntax:

matrix = new int[5][5];

A two-dimensional array is actually an array in which each element is a one-dimensional
array. The length of an array x is the number of elements in the array, which can be ob-
tained using x.length.
x[0], x[1], . . . , and x[x.length - 1] are arrays. Their lengths can be obtained using
x[0].length, x[1].length, . . . , and x[x.length - 1].length.

Each row in a two-dimensional array is itself an array. Thus, the rows can have different
lengths. An array of this kind is known as a ragged array. Figure 12 shows an example of
creating a ragged array.

Figure 12: An example of creating a ragged array.

Nested for loops are often used to process a two-dimensional array.
You can pass a two-dimensional array to a method just as you pass a one-dimensional
array. You can also return an array from a method.

38

Multidimensional Arrays
A two-dimensional array is an array of one-dimensional arrays, and a three-dimensional

array is an array of two-dimensional arrays. The following syntax declares a three-dimensional
array variable scores, creates an array, and assigns its reference to scores.

double[][][] scores = new double[6][5][4];

Array of Objects
An array can hold objects as well as primitive-type values. For example, the following

statement declares and creates an array of 10 Circle objects:
Circle[] circleArray = new Circle[10];

An array of objects is actually an array of reference variables. Thus, invoking circleAr-
ray[1].getArea() involves two levels of referencing, as shown in Figure 13.

Figure 13: In an array of objects, an element of the array contains a reference to an object.

39

9.3 Activities
• Activity 1: Write a method that returns the sum of all the elements in a specified

column in a matrix using the following header:
public static double sumColumn(double[][] m, int columnIndex)

Write a test program that reads a 3-by-4 matrix and displays the sum of each column.
Here is a sample run:

Enter a 3-by-4 matrix row by row:
1.5 2 3 4
5.5 6 7 8
9.5 1 3 1
Sum of the elements at column 0 is 16.5
Sum of the elements at column 1 is 9.0
Sum of the elements at column 2 is 13.0
Sum of the elements at column 3 is 13.0

• Activity 2: Write a method to add two matrices. The header of the method is as
follows:

public static double[][] addMatrix(double[][] a, double[][] b)
In order to be added, the two matrices must have the same dimensions and the same
or compatible types of elements. For example, The following figure shows the results
of adding two 3 * 3 matrices:

Write a test program that prompts the user to enter two 3 * 3 matrices and displays
their sum.

40

• Activity 3: Write a program that randomly fills in 0s and 1s into a 4-by-4 matrix,
prints the matrix, and finds the first row and column with the most 1s. Here is a
sample run of the program:

0 0 1 1
1 0 1 1
0 1 0 1
1 0 1 0
The largest row index: 1
The largest column index: 2

• Activity 4: Design a class named LinearEquation for a 2 * 2 system of linear
equations:

The class contains:

– A private 2 * 3 array data field called data (data[0,0] = a, data[0,1] = b, data[1,0]
= c, data[1,1] = d, data[0,2] = e, and data[1,2] = f).

– A constructor with the argument of 2 * 3 array.
– A method named isSolvable() that returns true if ad - bc is not 0.
– Methods getX() and getY() that return the solution for the equation.

Write a test program that prompts the user to enter the information of 4 linear
equations and displays the solution of each equation.
If ad - bc is 0, report that “The equation has no solution.”

41

10 Strings
10.1 Objectives

• To represent strings using the String object.

• To return the string length using the length() method.

• To return a character in the string using the charAt(i) method.

• To use the + operator to concatenate strings.

• To return an uppercase string or a lowercase string and to trim a string.

• To read strings from the console.

• To compare strings using the equals and the compareTo methods.

• To obtain substrings.

• To find a character or a substring in a string using the indexOf method.

• To use the StringBuilder class to process mutable strings.

42

10.2 Context
String is a predefined class in the Java library. The String type is not a primitive type.
A String object is immutable; its contents cannot be changed.

Table 7 lists the String methods for obtaining string length, for accessing characters
in the string, for concatenating string, for converting string to uppercases or lowercases,
and for trimming a string.

Table 7: Simple Methods for String Objects.
Method Description
length() Returns the number of characters in this string.
charAt(index) Returns the character at the specified index from this string.
concat(s1) Returns a new string that concatenates this string with string s1.
toUpperCase() Returns a new string with all letters in uppercase.
toLowerCase() Returns a new string with all letters in lowercase.
trim() Returns a new string with whitespace characters trimmed on both sides.

Reading a String from the Console
To read a string from the console, invoke the next() method on a Scanner object. For

example, the following code reads a word string from the keyboard:
Scanner input = new Scanner(System.in);
System.out.print(“Enter a word: ”);
String s = input.next();
System.out.println(“Word is ” + s);

The next() method reads a string that ends with a whitespace character. You can use
the nextLine() method to read an entire line of text. The nextLine() method reads a string
that ends with the Enter key pressed.

Comparing Strings
The String class contains the methods, as listed in Table 8, for comparing two strings.

Table 8: Comparison Methods for String Objects.
Method Description
equals(s1) Returns true if this string is equal to string s1.
equalsIgnoreCase(s1) Returns true if this string is equal to string s1; it is case insensitive.
compareTo(s1) Returns an integer greater than 0, equal to 0, or less than 0 to indicate

whether this string is greater than, equal to, or less than s1.
compareToIgnoreCase(s1) Same as compareTo except that the comparison is case insensitive.
startsWith(prefix) Returns true if this string starts with the specified prefix.
endsWith(suffix) Returns true if this string ends with the specified suffix.
contains(s1) Returns true if s1 is a substring in this string.

43

Note: the == operator checks only whether 2 strings refer to the same object.
Obtaining Substrings
You can obtain a single character from a string using the charAt method. You can also

obtain a substring from a string using the substring method in the String class, as given
in Table 9.

Table 9: The String Class Contains the Methods for Obtaining Substring.
Method Description
substring(beginIndex) Returns this string’s substring that begins with the character

at the specified beginIndex and extends to the end of the string.
substring(beginIndex, endIndex) Returns this string’s substring that begins at the specified be-

ginIndex and extends to the character at index endIndex - 1.
Note the character at endIndex is not part of the substring.

Finding a Character or a Substring in a String
The String class provides several versions of indexOf and lastIndexOf methods to find

a character or a substring in a string, as listed in Table 10.

Table 10: The String Class Contains the Methods for Finding Substrings.
Method Description
indexOf(ch) Returns the index of the first occurrence of ch in the string. Returns

-1 if not matched.
indexOf(ch, fromIndex) Returns the index of the first occurrence of ch after fromIndex in the

string. Returns -1 if not matched.
indexOf(s) Returns the index of the first occurrence of string s in this string.

Returns -1 if not matched.
indexOf(s, fromIndex) Returns the index of the first occurrence of string s in this string after

fromIndex. Returns -1 if not matched.
lastIndexOf(ch) Returns the index of the last occurrence of ch in the string. Returns

-1 if not matched.
lastIndexOf(ch, fromIndex) Returns the index of the last occurrence of ch before fromIndex in this

string. Returns -1 if not matched.
lastIndexOf(s) Returns the index of the last occurrence of string s. Returns -1 if not

matched.
lastIndexOf(s, fromIndex) Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

Replacing and Splitting Strings
The String class provides the methods for replacing and splitting strings, as shown in

Table 11.

44

Table 11: The String class contains the methods for replacing and splitting strings.
Method
replace(oldChar: char,newChar: char): String
replaceFirst(oldString: String, newString: String): String
replaceAll(oldString: String, newString: String): String
split(delimiter: String): String[]

Conversion between Strings and Arrays
Strings are not arrays, but a string can be converted into an array and vice versa. To

convert a string into an array of characters, use the toCharArray method. To convert an
array of characters into a string, use the String(char[]) constructor or the valueOf(char[])
method.

The StringBuilder Class
In general, the StringBuilder class can be used wherever a string is used. String-

Builder is more flexible than String. You can add, insert, or append new contents into
StringBuilder objects, whereas the value of a String object is fixed once the string is
created. You can create an empty string builder using new StringBuilder() or a string
builder from a string using new StringBuilder(String). Table 12 shows the functions to
modify a string in the StringBuilder.

Table 12: The StringBuilder class contains the methods for modifying string builders.
Method
append(data: char[]): StringBuilder
append(v: aPrimitiveType): StringBuilder
append(s: String): StringBuilder
delete(startIndex: int, endIndex: int):StringBuilder
deleteCharAt(index: int): StringBuilder
insert(offset: int, data: char[]): StringBuilder
insert(offset: int, b: aPrimitiveType): StringBuilder
insert(offset: int, s: String): StringBuilder len: int): StringBuilder
replace(startIndex: int, endIndex: int, s: String): StringBuilder
reverse(): StringBuilder
setCharAt(index: int, ch: char): void

45

10.3 Activities
• Activity 1: Write a program that prompts the user to enter two strings, and reports

whether the second string is a substring of the first string.

• Activity 2: Write a program that prompts the user to enter three cities and displays
them in ascending order.

• Activity 3: Write a program that prompts the user to enter a binary number as a
string (e.g. “110011”) and display its corresponding decimal value (e.g. 51).

• Activity 4: The String class is provided in the Java library. Provide your own
implementation for the following methods (name the new class MyString1):

– public MyString1(char[] chars);
– public char charAt(int index);
– public int length();
– public MyString1 substring(int begin, int end);
– public MyString1 toLowerCase();
– public boolean equals(MyString1 s);
– public static MyString1 valueOf(int i);

• Activity 5: The StringBuilder class is provided in the Java library. Provide your
own implementation for the following methods (name the new class MyString-
Builder1):

– public MyStringBuilder1(String s);
– public int length();
– public char charAt(int index);
– public String toString();
– public MyStringBuilder1 append(MyStringBuilder1 s);
– public MyStringBuilder1 append(int i);
– public MyStringBuilder1 toLowerCase();
– public MyStringBuilder1 substring(int begin, int end);

46

11 Introduction to Exception Handling and Text I/O
11.1 Objectives

• To get an overview of exceptions and exception handling.

• To write a try-catch block to handle exceptions.

• To discover file/directory properties using the File class.

• To write data to a file using the PrintWriter class.

• To read data from a file using the Scanner class.

47

11.2 Context
Exception-Handling Overview

Exception handling enables a program to deal with runtime errors and continue its
normal execution. Java enables a method to throw an exception that can be caught
and handled by the caller. When an exception is thrown, the normal execution flow is
interrupted. The statement for invoking the method is contained in a try block. The
try block contains the code that is executed in normal circumstances. The exception is
caught by the catch block. The code in the catch block is executed to handle the exception.
Afterward, the statement after the catch block is executed. In summary, a template for a
try-throw-catch block may look as follows:

try {
Code to run;
A statement or a method that may throw an exception;
More code to run;

}
catch (type ex) {

Code to process the exception;
}

The File Class
The File class contains the methods for obtaining the properties of a file/directory.

The File class is intended to provide an abstraction that deals with most of the machine-
dependent complexities of files and path names in a machine-independent fashion. How-
ever, the File class does not contain the methods for reading and writing file contents.

Caution: The directory separator for Windows is a backslash (\). The backslash
is a special character in Java and should be written as (\\) in a string literal.

Writing Data Using PrintWriter
The java.io.PrintWriter class can be used to create a file and write data to a text

file. First, you have to create a PrintWriter object for a text file as follows:
PrintWriter output = new PrintWriter(filename);

Then, you can invoke the print, println, and printf methods on the PrintWriter object
to write data to a file.
The close() method must be used to close the opened file. If this method is not invoked,
the data may not be saved properly in the file.

Reading Data Using Scanner
The java.util.Scanner class was used to read strings and primitive values from the

console. To read from a file, create a Scanner for a file, as follows:
Scanner input = new Scanner(new File(filename));

Invoking the constructor new Scanner(File) may throw an I/O exception, so the main
method declares throws Exception.

48

11.3 Activities
• Activity 1: Write a program that meets the following requirements using exception

handling technique:

– Creates an array with 100 randomly chosen integers.
– Prompts the user to enter the index of the array, then displays the corresponding

element value. If the specified index is out of bounds, display the message “Out
of Bounds”.

• Activity 2: Write a program that will count the number of characters, words, and
lines in a file. Words are separated by whitespace characters.

• Activity 3: Suppose a text file contains an unspecified number of scores separated
by spaces. Write a program that prompts the user to enter the file, reads the scores
from the file, and displays their total and average.

• Activity 4: Write a program that reads the strings from a file contains names and
reports whether the names in the files are stored in increasing order. If the names
are not sorted in the file, it displays the first two names that are out of the order.

• Activity 5: Write a program that prompts the user to enter a file name and displays
the occurrences of each letter in the file. Letters are case insensitive.

49

12 Object-Oriented Thinking
12.1 Objectives

• To apply class abstraction to develop software.

• To discover the relationships between classes.

• To create objects for primitive values using the wrapper classes.

50

12.2 Context
Class Abstraction and Encapsulation

Class abstraction is separation of class implementation from the use of a class. The
details of implementation are encapsulated and hidden from the user. This is known as
class encapsulation.

Thinking in Objects
The procedural paradigm focuses on designing methods. The object-oriented paradigm

couples data and methods together into objects. Software design using the object-oriented
paradigm focuses on objects and operations on objects.

Class Relationships
The common relationships among classes are association, aggregation, composition,

and inheritance. The following are the list of class relationships to be covered in this lab:

• Association: Association is a general binary relationship that describes an activity
between two classes.

• Aggregation: Aggregation models has-a relationships. The owner object is called
an aggregating object, and its class is called an aggregating class. The subject object
is called an aggregated object, and its class is called an aggregated class.

• Composition: We refer aggregation between two objects as composition if the ex-
istence of the aggregated object is dependent on the aggregating object. In other
words, if a relationship is composition, the aggregated object cannot exist on its
own.

Wrapper Classes
A primitive-type value is not an object, but it can be wrapped in an object using

a wrapper class in the Java API. Java provides Boolean, Character, Double, Float,
Byte, Short, Integer, and Long wrapper classes in the java.lang package for primitive
data types. The instances of all wrapper classes are immutable; this means that, once the
objects are created, their internal values cannot be changed.

The BigInteger and BigDecimal Classes
The BigInteger and BigDecimal classes can be used to represent integers or decimal

numbers of any size and precision. Both are immutable. An instance of BigInteger can
represent an integer of any size.

51

12.3 Activities
• Activity 1: Implement a class named Time for encapsulating a time. The class

contains the following:

– A data field of the BigInteger time that stores the elapsed time in milliseconds
since midnight, Jan 1, 1970.

– A no-arg constructor that constructs a Time for the current system time.
– A constructor with the specified time string to create a Time.

A time string format is “yyyy:mm:dd-hh:mm:ss”
such as “2022:5:13-14:40:20”.

– A constructor with the specified elapsed time in seconds since midnight, Jan 1,
1970.

– The getHour() method that returns the current hour in the range 0-23.
– The getMinute() method that returns the current minute in the range 0-59.
– The getSecond() method that returns the current second in the range 0-59.
– The getSeconds() method that returns the elapsed total seconds.
– The toString() method that returns a string time

such as “2022:5:13-14:40:20”.

Write a Driver class to test Time class.

52

• Activity 2: Design two classes: Flight1 and Itinerary2. The Flight class stores
the information about a flight with the following members:

– A data field named flightNo of the String type with getter method.
– A data field named departureTime of the Time type (The one created in Ac-

tivity 1) with getter and setter methods.
– A data field named arrivalTime of the Time type with getter and setter meth-

ods.
– A constructor that creates a Flight with the specified number, departureTime,

and arrivalTime.
– A method named getFlightTime() that returns the flight time in minutes.

The Itinerary class stores the information about itinerary with the following mem-
bers:

– A data field named flights of Flight[] type. The array contains the flights for
the itinerary.

– A constructor that creates an Itinerary with the specified flights.
– A method named getTotalTime() that returns the total travel time in minutes

from the departure time of the first flight to the arrival time of the last flight in
the itinerary.

Implement these two classes and a Driver class to test these classes.

1Flight: a trip made by or in an airplane or spacecraft
2Itinerary: the route of a journey, which might consists of several flights

53

	Elementary Java Programming
	Selections
	Loops
	Methods
	Recursion
	Objects and Classes Part(I)
	Objects and Classes Part(II)
	Single-Dimensional Arrays
	Multidimensional Arrays
	Strings
	Introduction to Exception Handling and Text I/O
	Object-Oriented Thinking

